Effect of Oxygen and Redox Potential on Glucose Fermentation in Thermotoga maritima under Controlled Physicochemical Conditions
نویسندگان
چکیده
Batch cultures of Thermotoga maritima were performed in a bioreactor equipped with instruments adapted for experiments performed at 80°C to mimic the fluctuating oxidative conditions in the hot ecosystems it inhabits. When grown anaerobically on glucose, T. maritima was shown to significantly decrease the redox potential (Eh) of the culture medium down to about -480 mV, as long as glucose was available. Addition of oxygen into T. maritima cultures during the stationary growth phase led to a drastic reduction in glucose consumption rate. However, although oxygen was toxic, our experiment unambiguously proved that T. maritima was able to consume it during a 12-hour exposure period. Furthermore, a shift in glucose metabolism towards lactate production was observed under oxidative conditions.
منابع مشابه
Corrigendum: Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast
Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g...
متن کاملHydrogen production by the hyperthermophilic bacterium Thermotoga maritima part I: effects of sulfured nutriments, with thiosulfate as model, on hydrogen production and growth
BACKGROUND Thermotoga maritima and T. neapolitana are hyperthermophile bacteria chosen by many research teams to produce bio-hydrogen because of their potential to ferment a wide variety of sugars with the highest theoretical H2/glucose yields. However, to develop economically sustainable bio-processes, the culture medium formulation remained to be optimized. The main aim of this study was to q...
متن کاملHydrogen production by the hyperthermophilic bacterium Thermotoga maritima Part II: modeling and experimental approaches for hydrogen production
BACKGROUND Thermotoga maritima is a hyperthermophilic bacterium known to produce hydrogen from a large variety of substrates. The aim of the present study is to propose a mathematical model incorporating kinetics of growth, consumption of substrates, product formations, and inhibition by hydrogen in order to predict hydrogen production depending on defined culture conditions. RESULTS Our math...
متن کاملBoosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste.
Proof of principle of biohythane and potential energy production from garden waste (GW) is demonstrated in this study in a two-step process coupling dark fermentation and anaerobic digestion. The synergistic effect of using co-cultures of extreme thermophiles to intensify biohydrogen dark fermentation is demonstrated using xylose, cellobiose and GW. Co-culture of Caldicellulosiruptor saccharoly...
متن کاملAmino acid transport in thermophiles: characterization of an arginine-binding protein in Thermotoga maritima. 2. Molecular organization and structural stability.
ABC transport systems provide selective passage of metabolites across cell membranes and typically require the presence of a soluble binding protein with high specificity to a specific ligand. In addition to their primary role in nutrient gathering, the binding proteins associated with bacterial transport systems have been studied for their potential to serve as design scaffolds for the develop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010